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1. Introduction
The aim of the present work is to study certain investigations in general theory

of relativity and cosmology by the coordinate free method of differential geometry.
The basic difference between Riemannian and semi-Riemannian geometry is (i) the
existence of null vector (i.e. g(v, v) = 0, for v 6= 0, where g is the metric tensor)
in semi-Riemannian manifold but not Riemannian manifold, (ii) the signature of
metric tensor g in semi-Riemannian manifold is (−,−, ...−,+,+, ...,+) but in a
Riemannian manifold the signature of g is (+,+, ...,+). Lorentzian manifold is a
spacial case of semi-Riemannian manifold. The signature of metric tensor g in
Lorentzian manifold is (−,+,+, ...,+). A Lorentzian manifold consists of three
types of vectors such as timelike (i.e. g(v, v) < 0), spacelike (i.e. g(v, v) > 0) and
null vector (i.e. g(v, v) = 0, for v 6= 0). In general, a Lorentzian manifold (M, g)
may not have a globally timelike vector field. If (M, g) admits a globally timelike
vector field, it is called time orientable Lorentzian manifold, physically known
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as space-time. The foundation of general relativity is based on a 4−dimensional
space-time manifold which is the stage of present modeling of the physical world a
torsionless, time-oriented Lorentzian manifold (M, g).

An n−dimensoinal generalized Robertson-Walker (GRW) space-time with n ≥
3 is a Lorentzian manifold which is a warped product of an open interval I of < and
an (n − 1)−dimensional Riemannian manifold ([10], [11], [12]). These Lorentzian
manifold broadly extends the classical Robertson-Walker (RW) space-time. RW
space-time is regarded as cosmological models since it is spatially homogenous and
spatially isotropic whereas GRW space-time serve as inhomogeneous extension of
RW space-times that admit an isotropic radiation [18]. A Lorentzian manifold
named ”Perfect fluid space-time” if its Ricci tensor S has the form

S(X, Y ) = αg(X, Y ) + βA(X)A(Y ), (1.1)

where α and β are scalars, A is a non-zero one-form such that g(X, v) = A(X)
for all v and v is the velocity vector field such that g(v, v) = −1. Perfect- fluid
space-times in a language of differential geometry are called quasi-Einstein spaces
where A is metrically equivalent to a unit space-like vector field. Einstein’s field
equation without cosmological constant is given by [16]

S(X, Y )− r

2
g(X, Y ) = kT (X, Y ). (1.2)

The paper is organized as follows: After Preliminaries in Section 3, we deduce
the basic algebraic properties of generalized conformal curvature tensor. Next
in Section 4, it is proven that a 4−dimensional Ricci simple generalized confor-
mally flat space-time is a perfect fluid space-time. Moreover the space-time is RW
space-time. Finally, it is shown that a 4−dimensional Ricci simple conservative
generalized conformal curvature tensor with constant ψ is a GRW space-time.

2. Preliminaries
The Weyl conformal curvature tensor is the traceless part of Riemann tensor

given as [13]

C(U, V,X, Y ) =R(U, V,X, Y )− 1

n− 2
[S(V,X)g(U, Y )

− S(U,X)g(V, Y ) + S(U, Y )g(V,X)− S(V, Y )g(U,X)]

+
r

(n− 1)(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )],

(2.1)

whereR Riemann curvature tensor and r denotes the scalar curvature. The number
of algebraically independent components of the Ricci and the Weyl tensors equals
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that of the Riemann tensor. Since in general relativity only the Ricci tensor is
coupled to matter by the Einstein’s fields equations, the conformal curvature tensor
describes the pure gravity degrees of freedom. Divergence of conformal curvature
tensor is given by

(divC)(U, V )X =
n− 3

n− 2
[(∇US)(V,X)− (∇V S)(U,X)

− 1

2(n− 1)
{g(V,X)dr(U)− g(U,X)dr(V )}].

(2.2)

A symmetric (0, 2) type tensor field E on a semi-Riemannian manifold (Mn, g) is
said to be a Codazzi tensor if it satisfies the Codazzi equation

(∇UE)(V,X) = (∇VE)(U,X), (2.3)

for arbitrary vector fields U, V and X. The geometrical and topological conse-
quences of the existence of a non-trivial Codazzi tensor on a Riemannian manifold
have been studied by Derdzinski and Shen [6].

In 2012, Mantica and Suh [9] introduced a new generalized (0, 2) symmetric
tensor Z and studied various geometric properties of it an Riemannian manifold.
A new tensor Z is defined as:

Z(X, Y ) = S(X, Y ) + ψg(X, Y ), (2.4)

where ψ is an arbitrary scalar function and name is generalized Z−tensor.

Definition 2.1. A Riemannian manifold (Mn, g) of dimension n (n > 3) is said
to be Ricci simple tensor [5] if its Ricci tensor S(X, Y ) satisfies the condition

S(X, Y ) = −rA(X)A(Y ), (2.5)

where r and A is scalar curvature and unit time-like vector field respectively. This
condition has a geometric meaning that a unit time like vector A becomes a principle
vector of Ricci operator.

3. Generalized Conformal Curvature Tensor
In view of equation (2.4), equation (2.1) takes the form

C(U, V,X, Y ) =R(U, V,X, Y )− 1

n− 2
[Z(V,X)g(U, Y )

−Z(U,X)g(V, Y ) + Z(U, Y )g(V,X)−Z(V, Y )g(U,X)]

+
r

(n− 1)(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

+
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )].

(3.1)
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Define

C∗(U, V,X, Y ) = R(U, V,X, Y )− 1

n− 2
[Z(V,X)g(U, Y )

−Z(U,X)g(V, Y ) + Z(U, Y )g(V,X)−Z(V, Y )g(U,X)]

+
r

(n− 1)(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )].

(3.2)

Thus from above equation, equation (3.1) reduces to

C(U, V,X, Y ) = C∗(U, V,X, Y ) +
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )],

which gives

C∗(U, V,X, Y ) = C(U, V,X, Y )− 2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )], (3.3)

where C∗(U, V,X, Y ) is called generalized conformal curvature tensor.
If ψ = 0, then from equation (3.3), we obtain

C∗(U, V,X, Y ) = C(U, V,X, Y ). (3.4)

Thus we can state as follows-
Theorem 3.1. A generalized conformal curvature tensor reduces to conformal
curvature tensor provided that the scalar function ψ vanishes.
Now, interchanging the places of U and V in equation (3.3), we obtain

C∗(V, U,X, Y ) = C(V, U,X, Y )− 2ψ

(n− 2)
[g(U,X)g(V, Y )− g(V,X)g(U, Y )]

i.e.

C∗(V, U,X, Y ) = −C(U, V,X, Y ) +
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

i.e.

C(U, V,X, Y )− 2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )] = −C∗(V, U,X, Y )

i.e.
C∗(U, V,X, Y ) = −C∗(V, U,X, Y ),
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which gives
C∗(U, V,X, Y ) + C∗(V, U,X, Y ) = 0,

which shows that generalized conformal curvature tensor is skew-symmetric with
respect to first two slots.

Interchanging the places of X and Y in equation (3.3), we obtain

C∗(U, V, Y,X) = C(U, V, Y,X)− 2ψ

(n− 2)
[g(V, Y )g(U,X)− g(U, Y )g(V,X)]

i.e.

C∗(U, V, Y,X) = −C(U, V,X, Y ) +
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

i.e.

C(U, V,X, Y )− 2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )] = −C∗(U, V, Y,X)

i.e.
C∗(U, V,X, Y ) = −C∗(U, V, Y,X),

which gives
C∗(U, V,X, Y ) + C∗(U, V, Y,X) = 0,

which shows that generalized conformal curvature tensor is skew-symmetric with
respect to last two slots.

Again interchanging pair of slots in equation (3.3), we obtain

C∗(X, Y, U, V ) = C(X, Y, U, V )− 2ψ

(n− 2)
[g(Y, U)g(X, V )− g(X,U)g(Y, V )]

i.e.

C∗(X, Y, U, V ) = C(U, V,X, Y )− 2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

i.e.
C∗(U, V,X, Y ) = C∗(X, Y, U, V ),

which gives
C∗(U, V,X, Y )− C∗(X, Y, U, V ) = 0,

which shows that generalized conformal curvature tensor is symmetric on pair slots.
Thus we can state as follows-
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Theorem 3.2. A generalized conformal curvature tensor on (Mn, g) is
(1) skew-symmetric in first two slots,
(2) skew-symmetric in lost two slots,
(3) symmetric in pair of slots.
Now, writing two more equations by the cyclic permutations of U, V and X of
equation (3.3), we obtain

C∗(V,X, U, Y ) = C(V,X, U, Y )− 2ψ

(n− 2)
[g(X,U)g(V, Y )− g(V, U)g(X, Y )], (3.5)

and

C∗(X,U, V, Y ) = C(X,U, V, Y )− 2ψ

(n− 2)
[g(U, V )g(X, Y )− g(X, V )g(U, Y )], (3.6)

Adding equations (3.3), (3.5) and (3.6), we obtain

C∗(U, V,X, Y ) + C∗(V,X, U, Y ) + C∗(X,U, V, Y ) = 0, (3.7)

which shows that generalized conformal curvature tensor satisfied Bianchi’s first
identity. Thus we can state as follows-

Theorem 3.3. A generalized conformal curvature tensor on (Mn, g) satisfies
Bianchi’s first identity.
Now, taking the covariant derivative of equation (3.2), with respect to U, we obtain

(∇UC∗)(V,X, Y,W ) = (∇UR)(V,X, Y,W )− 1

n− 2
[g(V,W )(∇UZ)(X, Y )

− g(X,W )(∇UZ)(V, Y ) + g(X, Y )(∇UZ)(V,W )− g(V, Y )(∇UZ)(X,W )]

+
dr(U)

(n− 1)(n− 2)
[g(X, Y )g(V,W )− g(V, Y )g(X,W )].

(3.8)

Writing two more equations by the cyclic permutations of U, V andX from equation
(3.8), we obtain

(∇V C∗)(X,U, Y,W ) = (∇VR)(X,U, Y,W )− 1

n− 2
[g(X,W )(∇VZ)(U, Y )

− g(U,W )(∇VZ)(X, Y ) + g(U, Y )(∇VZ)(X,W )− g(X, Y )(∇VZ)(U,W )]

+
dr(V )

(n− 1)(n− 2)
[g(U, Y )g(X,W )− g(X, Y )g(U,W )],

(3.9)
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and

(∇XC∗)(U, V, Y,W ) = (∇XR)(U, V, Y,W )− 1

n− 2
[g(U,W )(∇XZ)(V, Y )

− g(V,W )(∇XZ)(U, Y ) + g(V, Y )(∇XZ)(U,W )− g(U, Y )(∇XZ)(V,W )]

+
dr(X)

(n− 1)(n− 2)
[g(V, Y )g(U,W )− g(U, Y )g(V,W )].

(3.10)

Adding equations (3.8), (3.9) and (3.10) with the fact that (∇UR)(V,X, Y,W ) +
(∇VR)(X,U, Y,W ) + (∇XR)(U, V, Y,W ) = 0, we get

(∇UC∗)(V,X, Y,W ) + (∇V C∗)(X,U, Y,W ) + (∇XC∗)(U, V, Y,W )

= − 1

n− 2
[g(V,W ){(∇UZ)(X, Y )− (∇XZ)(U, Y )}

− g(X,W ){(∇UZ)(V, Y )− (∇VZ)(U, Y )}
+ g(X, Y ){(∇UZ)(V,W )− (∇VZ)(U,W )}
− g(V, Y ){(∇UZ)(X,W )− (∇XZ)(U,W )}
− g(U,W ){(∇VZ)(X, Y )− (∇XZ)(V, Y )}
+ g(U, Y ){(∇VZ)(X,W )− (∇XZ)(V,W )}]

+
dr(U)

(n− 1)(n− 2)
[g(X, Y )g(V,W )− g(V, Y )g(X,W )]

+
dr(V )

(n− 1)(n− 2)
[g(U, Y )g(X,W )− g(X, Y )g(U,W )]

+
dr(X)

(n− 1)(n− 2)
[g(V, Y )g(U,W )− g(U, Y )g(V,W )].

(3.11)

Assuming that Z−tensor is Codazzi tensor, then in view of equation (2.4), Ricci
tensor S(X, Y ) is also Codazzi tensor, i.e. (∇US)(X, Y )−(∇XS)(U, Y ) = 0, which
gives that the scalar curvature tensor r is constant. Thus above equation (3.11),
reduces to

(∇UC∗)(V,X, Y,W ) + (∇V C∗)(X,U, Y,W ) + (∇XC∗)(U, V, Y,W ) = 0. (3.12)

Thus we can state as follows-
Theorem 3.4. A generalized conformal curvature tensor on (Mn, g) satisfies
Bianchi’s second identity, if the Z−tensor is Codazzi tensor.
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4. Generalized Conformally Flat Space-time
We consider a 4−dimensinal generalized conformally flat manifold (M, g) with

Lorentzian metric g. From equation (3.3), we have

C(U, V,X, Y )− 2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )] = 0.

i.e.

C(U, V,X, Y ) =
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]. (4.1)

Using equation (2.1) in equation (4.1), we have

R(U, V ,X, Y )− 1

n− 2
[S(V,X)g(U, Y )− S(U,X)g(V, Y ) + S(U, Y )g(V,X)

− S(V, Y )g(U,X)] +
r

(n− 1)(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

=
2ψ

(n− 2)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )].

(4.2)

For n = 4, above equation (4.2) takes the form

R(U, V,X, Y ) =
1

2
[S(V,X)g(U, Y )− S(U,X)g(V, Y )

+ S(U, Y )g(V,X)− S(V, Y )g(U,X)]

+
6ψ − r

6
[g(V,X)g(U, Y )− g(U,X)g(V, Y )].

(4.3)

Assuming space-time is Ricci simple, then in view of equation (2.5) above equation
reduces to

R(U, V,X, Y ) =
1

2
[−rA(V )A(X)g(U, Y ) + rA(U)A(X)g(V, Y )

− rA(U)A(Y )g(V,X) + rA(V )A(Y )g(U,X)]

+
6ψ − r

6
[g(V,X)g(U, Y )− g(U,X)g(V, Y )],

(4.4)

which gives

R(U, V,X, Y ) =
6ψ − r

6
[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

− r

2
[g(U, Y )A(V )A(X) + g(V,X)A(U)A(Y )

− g(V, Y )A(U)A(X)− g(U,X)A(V )A(Y )],

(4.5)
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which is of the form of quasi-constant curvature tensor.
Contracting equation (4.5), we obtain

S(V,X) =
6ψ − r

6
[4g(V,X)− g(V,X)]

− r

2
[4A(V )A(X)− g(V,X)− A(V )A(X)− A(V )A(X)],

(4.6)

i.e.

S(V,X) =
6ψ − r

2
g(V,X) +

r

2
g(V,X)− rA(V )A(X),

which in view of equation (2.5) becomes

S(V,X) = 3ψg(V,X) + S(V,X),

which yields to
ψ = 0. (4.7)

In view of equation (4.7), equation (4.1) gives

C(U, V,X, Y ) = 0.

This shows that generalized conformally Ricci simple flat space-time is conformally
flat. Thus we can state as follows-

Theorem 4.1. A 4−dimensional Ricci simple generalized conformally flat space-
time M is conformally flat perfect fluid space-time.

In [11], the authors have shown that an n−dimensional (n ≥ 4) Ricci simple
conformally flat perfect fluid space-time is RW space-time. Thus we can state as
follows-

Corollary 4.2. A 4−dimensional Ricci simple generalized conformally flat space-
time M is RW space-time.

5. Conservative Generalized Conformal Space-time
From equation (3.3), generalized conformal curvature tensor is given by

C∗(U, V )X = C(U, V )X − 2ψ

(n− 2)
[g(V,X)U − g(U,X)V ]. (5.1)

The divergence of C∗(U, V )X is defined as

(divC∗)(U, V )X = g((∇eiC∗)(U, V )X, ei)
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i.e.

(divC∗)(U, V )X = g((∇eiC)(U, V )X, ei)−
2

n− 2
[g((∇eiψ){g(V,X)U−g(U,X)V }, ei)],

which gives

(divC∗)(U, V )X = (divC)(U, V )X − 2

(n− 2)
[(Uψ)g(V,X)− (V ψ)g(U,X)]. (5.2)

From equations (2.2) and (5.2), we obtain

(divC∗)(U, V )X =
n− 3

n− 2
[(∇US)(V,X)− (∇V S)(U,X)

− 1

2(n− 1)
{g(V,X)dr(U)− g(U,X)dr(V )}]

− 2

(n− 2)
[(Uψ)g(V,X)− (V ψ)g(U,X)].

(5.3)

If scalar function ψ is constant then from equation (5.2), we obtain

(divC∗)(U, V )X = (divC)(U, V )X. (5.4)

If (divC∗)(U, V )X = 0 then from equation (5.4), we obtain

(divC)(U, V )X = 0.

Thus we can state as follows-
Theorem 5.1. A 4−dimensional relativistic conservative generalized conformal
curvature space-time M admitting constant scalar function ψ is conservative con-
formal curvature tensor.

In [11], the authors have shown that an n−dimensional (n ≥ 4) Ricci simple
conservative conformal curvature space-time is a GRW space-time with Einstein
fibers. Thus we can state as follows-

Corollary 5.2. A 4−dimensional Ricci simple conservative generalized conformal
curvature space-time M admitting constant scalar function ψ a GRW space-time
with Einstein fibers.
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